
JavaScript For Cats
An introduction for new programmers

So easy your human
companion could do it too!

JavaScript is a programming

language or, in other words, a

means by which a computer is

instructed to do things. Just the

same as one controls humans

with hisses and meows, one

controls computers with

statements written in a

programming language. All web

browsers understand JavaScript

and you can take advantage of

that to make web pages do

crazy things!

JavaScript started as a programming language to make internet pages more interactive. Nowadays

JavaScript runs in more places than just web browsers — it runs on web servers, phones and even
robots! This page will teach you some JavaScript basics so that you can get up and running in no

time*!

* actual time: more than none. Probably an hour or two. Also since you are a cat you are less likely to run
and more likely to lay around in the sun

Table of contents

The console

Strings

Values and variables

Using functions

Built in JS functions

Download new JS functions

Writing new functions

Loops

Arrays

Objects

Recommended reading

If you don't want to read it all now here is a PDF version you can keep for later.

Don't be a scaredy-cat

You will always land on your feet —

even when programming! Unlike

pawing over a glass of water on your

laptop, nothing in these tutorials will

damage your computer in any way,

even if you mistype a command or click

the wrong button. Like cats, computer

programmers make mistakes all time:

misspelling things, forgetting quotes or

brackets, and being forgetful of how

basic functions (and yarn) work.

Programmers care more about making

it work eventually rather than trying to

make it work the very first time. The

best way to learn is by making mistakes!

So don't be a scaredy-cat! The absolute

worst thing that will happen is that you

might have to refresh this page in your web browser if you get stuck. Don't worry though, this will

happen very rarely — and we're talkin' 13-toed cat rare.

The basics

There is JavaScript running on this page right now! Let's play around with it a little. For the sake of

simplicity I'll assume you are using Google Chrome to read this page (if you aren't it's probably

easier on both of us if you follow along with Chrome).

First, right click anywhere on the screen and hit Inspect Element, then click on the Console tab. You

should see a thingy that looks like this:

This is a console, otherwise known as a "command line" or "terminal". Basically its a way to type one

thing at a time into a computer and immediately get the computers answer back. They are super

useful as a learning tool (I still use the console nearly every day that I'm coding).

The console does some pretty cool stuff. Here I have started to type something and the console is

helping me out by giving me a list of all the possible things I could continue to type! Another thing

you could do is type 1 + 1 into the console and then hit the Enter key and watch what happens.

Using the console is a very important part of learning JavaScript. If you don't know if something

works or what the command is for something, go to the console and figure it out! Here's an
example:

Strings

Since I am a cat I want to replace every instance of the word dog on the Internet with those blasted

dogs . First go into your console and type in a few sentences that contain the word dog at least once.
In JavaScript a bunch of letters, numbers, words or anything else is known as a String (as in a string
of characters). Strings have to begin AND end with a quotation mark. Single ' or double " is fine,
just make sure you use the same at the beginning as you do at the end.

See the nasty error message? Don't worry - you didn't break any laws. SyntaxError ILLEGAL is just
the way it sounds when robots tell you that your program has a problem. The first two sentences
had matching quotation marks at the beginning and end, but when I mixed single and double
quotation marks it freaked out on me.

OK, to fix up one of these sentences (by replacing dog with our enhanced version) we have to first
save the original sentence so that we can call it up later when we do our replacing magic. Notice how
the string gets repeated in red when we type it into the console? This is because we haven't told it to
save the sentence anywhere so it just gives it right back (or it gives us an Error back if we messed
something up).

Values and variables

Values are the simplest components in JavaScript. 1 is a value, true is a value, "hello" is a value,
function() {} is a value, the list goes on! There are a handful of different types of values in

JavaScript but we don't need to go over them all right away — you will learn them naturally the more
you code!

To store values we use things called variables. The word 'variable' means 'can change' and is used
because variables can store many different types of values and can change their value many times.
They are pretty much like mailboxes. We put something in a variable, like our sentence, and then
give the variable an address that we can use to look up the sentence later. In real life mailboxes have
to have PO Box numbers but in JavaScript you usually just use lowercase letters or numbers without
any spaces.

var is shorthand for variable and the = means store the thing on the right-hand side in the thing on the
left-hand side. Also as you can see, now that we are storing our sentence in a variable the console
doesn't just return our sentence right away, but instead gives us undefined which means there was
nothing to return.

If you simply type a variable name into the console it will print out the value stored in that variable. A
note about variables is that by default they go away when you switch to a different page. If I were to
hit the Refresh button in Chrome, for example, my dogSentence variable would get wiped and it
would be like it never existed. But don't worry about this too much for now — you can just hit the up
or down arrows on your keyboard while in the console to go through everything you've entered in
recently.

Functions

Now that we have our sentence stored in a variable let's give that variable to something that will
replace words! We call things that perform actions like this functions because, well, they serve a
specific function (AKA purpose or action) for us. Calling them "actions" sounded weird I guess so they
went with the word "function" instead.

JavaScript has a function called replace that does exactly what we want! Functions take in any
number of values (zero, one or many) and return either nothing (undefined) or exactly one value
(functions can't return two or more values at a time — only a single value). The replace function is
available to use on any strings and takes in two values: the characters to take out and the characters
to swap in. It gets confusing to describe these things so here is a visual example:

Notice how the value of dogSentence is the same even after we run replace on it? This is because

replace (and most JavaScript functions for that matter) takes the variable or value that we give it

and returns a new value instead of modifying the thing we passed in. Since we didn't store the new

variable (there is no = on the left side of the replace function) it just printed out the return value in

our console.

The "standard library"

You might be wondering what other functions are available in JavaScript. The answer: A TON. There

are lots built in, standard libraries that you can learn about at MDN (A site run by Mozilla that has

lotsa nifty information about web technologies). For example here is the MDN page on JavaScript's
Math object.

Third-party JavaScript

There is also a lot of JavaScript code available that is not built in. JavaScript from third parties is

usually referred to as a "library" or "plugin". One of my favorites is called Underscore.js. Let's go and

grab it and load it into our page! First go to the Underscore site, http://underscorejs.org/, click on

the download link (I usually use development versions because they are easier to read but both will

give you the same basic functionality), and then copy all the code onto your clipboard (you can use

Select All from the Edit menu to select everything).

Then paste it into your console and hit enter. Now your browser has a new variable in it: _ .

Underscore gives you a ton of helpful functions to play with. We'll learn more about how to use

them later.

Making new functions

You aren't limited to using other peoples functions — you can also write them yourself. It's pretty

easy! Let's make a function called makeMoreExciting that adds a bunch of exclamation points to the

end of a string.

function makeMoreExciting(string) {
 return string + '!!!!'
}

In my head I read it out loud like this: "there's a function called 'make more exciting' that takes in a

string and returns a new copy of that string that has a bunch of exclamation points at the end". Here

is how we would write this in the console manually if we weren't using a function:

The expression string + '!!!!' returns a new string and our variable called string stays the same

as before (since we never updated it to anything else with =).

Let's use our function instead of doing it manually. First, paste the function into the console and

then call the function by passing in a string:

You could also call the same function by passing in a variable that points to a string (in the above
example we just typed the string straight in there as a value instead of saving it to a variable first):

The line makeMoreExciting(sentence) is equivalent to saying sentence + '!!!!' . What if we wanted to
modify in-place (aka update) the value of sentence? Simply save the return value of the function
back into our sentence variable:

var sentence = "time for a nap"
sentence = makeMoreExciting(sentence)

Now sentence will have the exclamation marks in it! Note that you only have to use var when you
are initializing a variable — the first time you ever use it. After that you shouldn't use var unless
you want to re-initialize (reset/clear/empty) the variable.

What would happen if we took out the return statement in our function?

Why is sentence empty? Because functions return undefined by default! You can choose to return a

value by return ing something. Functions should take in a value and, if they change the value or

create a new value that is supposed to be used later, return a value (fun fact: a fancy term for this

style is functional programming). Here is another function that doesn't return anything but instead

uses a different method to show us the output:

function yellIt(string) {
 string = string.toUpperCase()
 string = makeMoreExciting(string)
 console.log(string)
}

This function, yellIt , uses our previous function makeMoreExciting as well as the built-in String

method toUpperCase. Methods are just a name for a function when it belongs to something — in

this case toUpperCase is a function that belongs to String so we can refer to it as either a method or
a function. makeMoreExciting on the other hand doesn't belong to anyone so it would be technically

incorrect to refer to it as a method (confusing, I know).

The last line of the function is another built-in that simply takes in any values that you give it and

prints them out into the console.

So is there something wrong with the above yellIt function? It depends! Here are the two major

types of functions:

functions that modify or create values and return them

functions take in values and perform some action that cannot be returned

console.log is an example of the second type of function: it prints things out to your console — an

action that you can see with your eyes but that cannot be represented as a JavaScript value. My own

rule of thumb is to try to keep the two types of functions separate from each other, so here's how I

would rewrite the yellIt function:

function yellIt(string) {
 string = string.toUpperCase()
 return makeMoreExciting(string)
}

console.log(yellIt("i fear no human"))

This way yellIt becomes more generic, meaning it only does one or two simple little things and

doesn't know anything about printing itself to a console — that part can always be programmed

later, outside the function definition.

Loops

Now that we have some basic skills under our belt (Author's note: do cats even wear belts?) we can start

being lazy. What?! Yes, that's right: programming is about being lazy. Larry Wall, inventor of the Perl

programming language, called laziness the most important virtue of a good programmer. If

computers didn't exist you would have to do all sorts of tedious tasks by hand, but if you learn to

program you can lay in the sun all day while a computer somewhere runs your programs for you. It

is a glorious lifestyle filled with relaxation!

Loops are one of the most important ways to harness the power of a computer. Remember

Underscore.js from earlier? Make sure you have it loaded in the page (remember: you can just hit

the up arrow on your keyboard a few times and then hit Enter to load it in again if you need to) and

try copy/pasting this into your console:

function logANumber(someNumber) {
 console.log(someNumber)
}

_.times(10, logANumber)

This code uses the times method of Underscore which takes in 1 number and 1 function and then
starts from 0 and for 10 steps counts up by 1, calling the function with the number each step of the
way.

If we were to manually write out what times is doing in the above code it would look like this:

logANumber(0)
logANumber(1)
logANumber(2)
logANumber(3)
logANumber(4)
logANumber(5)
logANumber(6)
logANumber(7)
logANumber(8)
logANumber(9)

But cats refuse to do unnecessary manual work like this so we must always ask ourselves, "am I doing
this in the laziest way possible?".

So why is this called looping? Think of it like this: If we were to write out a list of 10 numbers (from 0
to 9) using a JavaScript Array it would look like this:

var zeroThroughTen = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

What times really does is visit each number and repeat a task: in the example above the task was to
call the logANumber function with the current number. Repeating tasks in this way is referred to as
looping over the Array.

Arrays

I've mentioned these a few times but let's spend a minute learning about them. Imagine you need to
keep track of all your buddies. Well, an Array will do just fine. Think of an Array like a sorted list that
you can keep tons of stuff in.

This is how you make one:

 var myCatFriends = ["tommy", "tabby", "ceiling"]

Sweet! Now you have a list of your cat buddies.

Elements (that is what you call a single item in an array) that are stored within arrays start at 0 and

count up from there. So myCatFriends[0] returns tommy and myCatFriends[1] returns tabby ... etc etc.

To get buddies out of your brand new Array you can just access an element directly like so:

 console.log(myCatFriends[0])

If you made a brand new cat friend at the hippest cat club the other night and you want to add them

to your list it is super simple: myCatFriends.push("super hip cat") .

To check that the new cat made it into your array you can use .length :

Notice how push returned the length? Handy! Also take note that arrays will always preserve
ordering which means they will remember the order in which you added or defined things. Not

everything in JavaScript preserves ordering so remember this special property of Arrays!

Objects

Arrays are good for lists, but for other tasks they can be hard to work with. Consider our array of cat

friends. What if you also wanted to store more than just names?

var myCatFriends = ["tommy", "tabby", "ceiling"]
var lastNames = ["the cat", "cat", "cat"]
var addresses = ["The Alley", "Grandmas House", "Attic"]

Sometimes it is nice to have all of the addresses or names in one variable. But sometimes you have

a cat in mind, let's say Tommy, and you just want to look up that cat's address. With arrays it takes a

lot of work because you can't just say 'hey array, give me Tommy's address' because 'Tommy' is in

one array and his address is in a totally different array.

This can be brittle because if our arrays change and we add a new cat to the beginning we would

have to also update our tommysPosition variable to point to the new location of Tommy's

information in the arrays! Here is a easier to maintain way to store information like this using

objects:

var firstCat = { name: "tommy", lastName: "the cat", address: "The Alley" }
var secondCat = { name: "tabby", lastName: "cat", address: "Grandmas House" }
var thirdCat = { name: "ceiling", lastName: "cat", address: "Attic" }

Why would we do it this way? Because now we have a variable for each cat that we can use to get

that cats values in a more convenient and readable way.

You can think of Objects like keys on a keyring. Each one is for a specific door and if you have nice

labels on your keys you can open doors very fast. In fact, the things on the left hand side of the :

are called keys (are also known as properties) and the things on the right hand side are values.

// an object with a single key 'name' and single value 'tommy'
{ name: 'tommy' }

So why would you ever use arrays if you can just put your data in objects? Because objects don't

remember the order of the keys that you set. You might enter in an object like this:

{ date: "10/20/2012", diary: "slept a bit today", name: "Charles" }

But the computer could give it back to you like this:

{ diary: "slept a bit today", name: "Charles", date: "10/20/2012" }

Or like this!

{ name: "Charles", diary: "slept a bit today", date: "10/20/2012" }

So you can't ever trust the order of keys in objects. If you wanna get REALLY fancy you can make an

array filled with objects, or an object filled with arrays!

var moodLog = [
 {
 date: "10/20/2012",
 mood: "catnipped"
 },
 {
 date: "10/21/2012",
 mood: "nonplussed"
 },
 {
 date: "10/22/2012",
 mood: "purring"
 }
]

// ordered from least to most favorite
var favorites = {
 treats: ["bird sighting", "belly rub", "catnip"],
 napSpots: ["couch", "planter box", "human face"]
}

When you combine different things like this you are making data structures, just like legos!

That is the end for now, but here's what I'm working on:

More crazy looping!
JSON!
Grabbing stuff from other pages on the internet and displaying it
How to use Github to find and share code
Node.js and server side catgramming

Got another topic you wanna see covered? Open an issue for it on github.

I'd recommend coming back again tomorrow and going through the entire thing again from the
beginning! It might take a few times through before you get everything (programming is hard). Just
try to avoid reading this page in any rooms that contain shiny objects . . . they can be incredibly
distracting.

Recommended reading

JavaScript For Cats skips over lots of details that aren't important for getting started (cats are not
known for their attention spans), but if you feel like you need to dive in deeper then check these out:

Eloquent Javascript is a free book that teaches you JavaScript! It's pretty good! Especially the
chapter on values, variables, and control flow
Mozilla's JavaScript Guide also has a pretty sweet intro chapter called values, variables and literals
Felix's Node.js Style Guide was written about programming JavaScript on the server-side using
Node.js but there are lots of tips in here that are useful for anyone programming with JavaScript.

Satisfied customers

Here are some of our early students (some went on to found the successful company
RealtimeCats® which offers "Software as a Service" integrated cloud solutions for high resolution
feline imagery in faster than real time)

JSForCats.com is a labor of love and work in progress by @maxogden. If you would like to contribute and

make this tutorial better there is a Github repo right over here. Bonus: Here is a PDF version of JSForCats.

